
19–1 Bacteria

Slide 1 of 40 **19–1 Bacteria** Sclassifying Prokaryotes

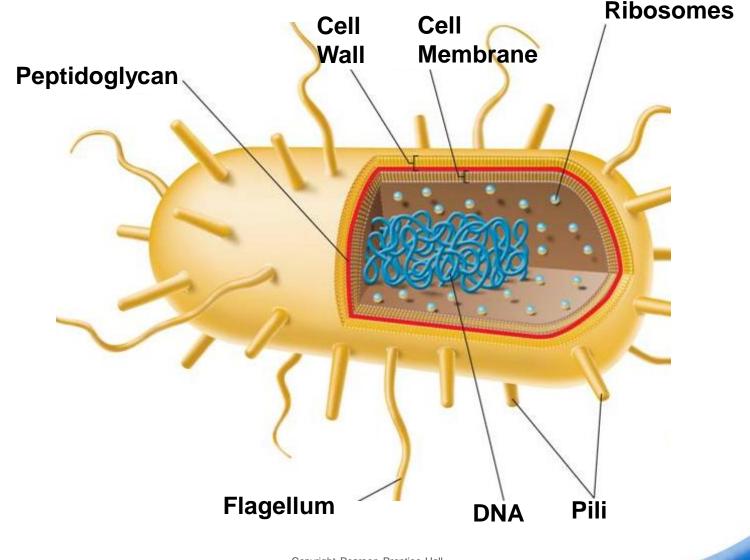
Classifying Prokaryotes

-once all placed in the Kingdom Monera. -now divided:

-Eubacteria and the Archaebacteria.

Copyright Pearson Prentice Hall

Slide 2 of 40 **19–1 Bacteria** Sclassifying Prokaryotes


Eubacteria

- -have a cell wall
- -cell wall contain peptidoglycan.
- -have a cell membrane
- -Some eubacteria have a second membrane

Slide 3 of 40 **19–1 Bacteria** Sclassifying Prokaryotes

E. coli, a Typical Eubacterium

PEARSON Prentice Hall

Copyright Pearson Prentice Hall

Slide

4 of 40

Eubacteria live in a variety of environments,

- in fresh and salt water
- on land
- in the human body

Slide 5 of 40 19–1 Bacteria 🗪 Classifying Prokaryotes

Many archaebacteria live in extreme environments.

- Methanogens →oxygen-free environments, such as thick mud and animal digestive tracts.
- Others →salty environments or in hot springs where water temperatures approach the boiling point.

Slide 6 of 40 **19–1 Bacteria Identifying Prokaryotes**

Prokaryotes are identified by characteristics such as:

- shape
- the chemical nature of their cell walls

Slide 7 of 40

- the way they move
- the way they obtain energy

19–1 Bacteria Jdentifying Prokaryotes

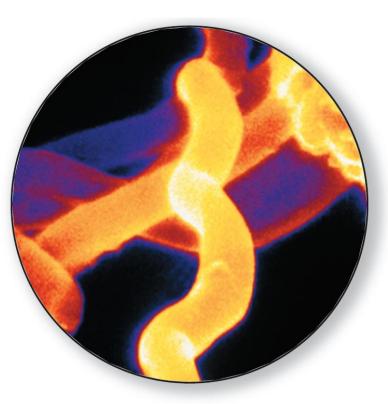
Shapes

Rod-shaped prokaryotes are called **bacilli**.

Slide 8 of 40

19–1 Bacteria Jdentifying Prokaryotes

Spherical prokaryotes are called **cocci**.



Slide 9 of 40

19–1 Bacteria Jdentifying Prokaryotes

Spiral and corkscrew-shaped prokaryotes are called **spirilla**.

Slide 10 of 40

19–1 Bacteria 📫 Metabolic Diversity

Metabolic Diversity

Two main groups:

- Heterotrophs →energy by consuming other organisms.
- Autotrophs \rightarrow make their own food

Slide 11 of <u>40</u> 19–1 Bacteria 🗪 Metabolic Diversity

Heterotrophs

Chemoheterotrophs

-take in organic molecules for both energy and a supply of carbon.

Photoheterotrophs

-use sunlight for energy, but take in organic compounds as a carbon source.

Slide 12 of 40

19–1 Bacteria 🗪 Metabolic Diversity

Autotrophs

Photoautotrophs

-use light energy to convert carbon dioxide and water to carbon compounds and oxygen.

Chemoautotrophs

-make organic carbon molecules from carbon dioxide,

-do not require light as energy.

Copyright Pearson Prentice Hall

Slide 13 of 40 19–1 Bacteria 🗪 Metabolic Diversity

Obligate aerobes

-require a constant supply of oxygen.

Obligate anaerobes

-live without oxygen

Facultative anaerobes

-can survive with or without oxygen

Copyright Pearson Prentice Hall

Slide 14 of 40

Growth and Reproduction

- -binary fission.
- -conjugation.
- -some produce spores.

Copyright Pearson Prentice Hall

Slide 15 of 40

Binary Fission

Binary fission is a type of asexual reproduction in which an organism replicates its DNA and divides in half, producing two identical daughter cells.

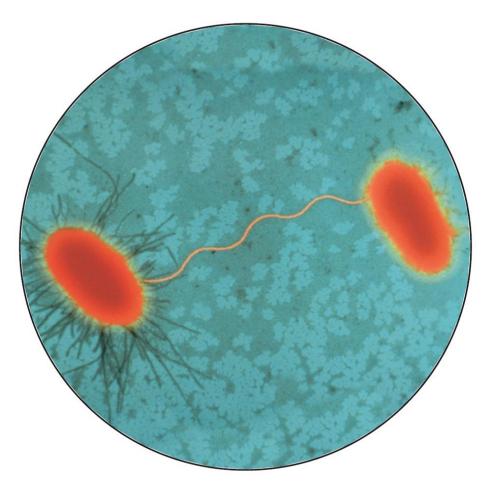
Copyright Pearson Prentice Hall

Slide 16 of 40

Binary Fission

Slide 17 of 40

Conjugation


-hollow bridge forms between two bacterial cells,

-genes move from one cell to the other.

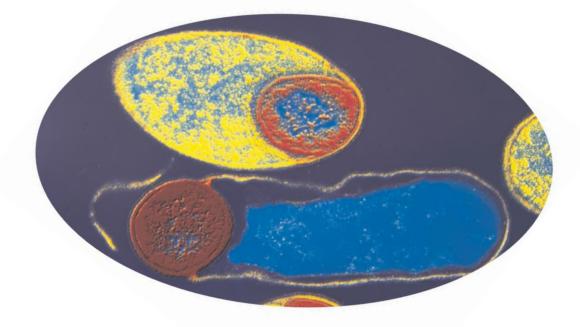
-increases genetic diversity in populations of bacteria.

Slide 18 of 40

Conjugation

Slide 19 of 40

Spore Formation


-produces a thick internal wall that encloses its DNA and some of its cytoplasm.

-can remain dormant for months or years.

-allow bacteria to survive harsh conditions.

Slide 20 of 40

Spore Formation

Slide 21 of 40

19–1 Bacteria 🗪 Importance of Bacteria

Importance of Bacteria

Bacteria are vital to the living world.

- Some are producers that capture energy by photosynthesis.
- Others are decomposers that break down the nutrients in dead matter.

Slide 22 of 40

• Still other bacteria have human uses.

Decomposers

-recycle nutrients and maintain equilibrium-help in the treatment of sewage.

Copyright Pearson Prentice Hall

Slide 23 of 40 **19–1 Bacteria Importance of Bacteria**

Nitrogen Fixers

-nitrogen gas changed chemically to ammonia or other nitrogen compounds,

-known as nitrogen fixation.

-symbiotic relationships

Copyright Pearson Prentice Hall

Slide 24 of 40 19–1 Bacteria 🗪 Importance of Bacteria

Human Uses of Bacteria

We depend on bacteria for many things, including:

- foods and beverages
- removal of waste and poisons from water
- mining minerals from the ground
- synthesis of drugs and chemicals via genetic engineering
- production of vitamins in human intestines

END OF SECTION