$$
\begin{aligned}
& \begin{array}{l}
v_{i}=0 \\
d=? \\
l=4 \mathrm{~s} \\
a=0.2 \mathrm{~m} / \mathrm{s}
\end{array} \quad\left\{\begin{array}{l}
\\
2.5
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
d=x+1 \varepsilon a t^{2} \\
=2(0.2)(4)^{2}
\end{array} \\
& -(0.1)(16)=1.6 \mathrm{~m}
\end{aligned}
$$

Frot=275N

$$
\begin{array}{rrr}
m=49 \mathrm{~kg} & \text { Fnet-ma } \\
a=\frac{F_{\text {net }}}{m} & =\frac{275 \mathrm{~N}}{49} 1 \mathrm{~kg} \\
& =5.6 \mathrm{~m} / \mathrm{s}^{2} & \\
& =5.6 \mathrm{~m} / \mathrm{s}^{2} \\
U_{i}=3 \mathrm{~m} / \mathrm{s} & & 2
\end{array}
$$

$$
\begin{aligned}
d= & d & =\sqrt{2} t+2 a l \\
t=85 & & =(3)(8)+\frac{1}{2}(5.6)(8)^{2} \\
& & =24+(2.8)(64)
\end{aligned}
$$

$d=$

$$
d=v: t+1<2 a^{2}
$$

$$
=24+(28)(64)
$$

$$
=203.2 \mathrm{~m}
$$

$$
\begin{aligned}
& m=1.2 \times 10^{3} \mathrm{~kg} \\
& V_{i}=45 \mathrm{~km} / \mathrm{h}=2.2 \mathrm{~m} / \mathrm{s} \\
& d=35 \mathrm{~m} \\
& F_{f}=\mu F_{N} \Rightarrow \mu=\frac{F_{F}}{F_{N}} \\
& F_{N}=F_{g}=m g \quad \mu t=\frac{F_{f}}{11.76 \times 10^{3}} \\
& =\left(1.2 \times 10^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \quad \text { Fnet }=\mathrm{ma} \\
& =11.76 \times 10^{3} \quad F_{f}=F_{n t} t=m a \\
& \begin{array}{l}
F_{f}=m a \\
F_{f}=\left(1.2 \times 10^{3}\right)(a)
\end{array} \\
& =\left(1.2 \times 10^{3}\right)(-2.23) \\
& =-2.68 \times 10^{3} \\
& a=\text { ? } \\
& V:=1.5 \mathrm{~m} / \mathrm{s} \\
& d=35 \mathrm{~m} \\
& V_{f}=0 \\
& J_{f}^{2}=V_{1}^{2}+2 a d \\
& 0=(2.5)^{2}+2 a^{3} 5 \\
& O=(12.5)^{2}+709 \\
& -156.25=709 \\
& \frac{-156.2 \sigma}{70}=a=-2.20 \mathrm{~m} / \mathrm{s} \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& V_{f}=? \\
& V_{i}=0 \\
& F_{n c t} 390 \mathrm{~N} \\
& F=m a \\
& a=\frac{E}{m}=\frac{39}{0.2} \\
& =195 \mathrm{~m} / \mathrm{s}^{2} \\
& m=0.2 \mathrm{~kg} \\
& d=0.22 \mathrm{~m} \\
& v_{f}^{2}=x^{2}+2 a d \\
& 2=2(198)(0.22) \\
& U_{c}^{2}=\sqrt{85.8} \\
& =9.26 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

