Original equation

$$
a=\frac{V_{\mathrm{f}}-V_{\mathrm{i}}}{\Delta t}
$$

- Mulitply both sides of the $\quad a \Delta t=\left(\frac{V_{\mathrm{f}}-V_{\mathrm{i}}}{\Delta t}\right) \Delta t$ equation by Δt and simplify.

$$
V_{\mathrm{f}}-V_{\mathrm{i}}=a \Delta t
$$

- Add v_{i} to both sides of the

$$
\begin{aligned}
& v_{\mathrm{f}}-v_{\mathrm{i}}+v_{\mathrm{i}}=a \Delta t+v_{\mathrm{i}} \\
& v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t
\end{aligned}
$$ equation and simplify.

Original equation

$$
\Delta d=v \Delta t
$$

but, this is valid only if motion is constant. If the motion is accelerated and uniform, the velocity is actually the average velocity that occurs during the motion.

Therefore,

$$
\Delta d=\frac{V_{\mathrm{i}}+V_{\mathrm{f}}}{2} \Delta t
$$

Using

$$
\Delta d=\frac{V_{\mathrm{i}}+V_{\mathrm{f}}}{2} \Delta t
$$

- Recall the expression you
developed for final velocity. $\quad v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t$
- Substitute this value into the $\Delta d=\frac{v_{\mathrm{i}}+\left(v_{\mathrm{i}}+a \Delta t\right)}{2} \Delta t$ first equation.
- Combine like terms.

$$
\Delta d=\left(\frac{2 v_{\mathrm{i}}+a \Delta t}{2}\right) \Delta t
$$

- Multiply through by Δt.
$\Delta d=\frac{2 v_{\mathrm{i}} \Delta t}{Z}+\frac{a \Delta t^{2}}{2}$
- Simplify.
$\Delta d=v_{\mathrm{i}} \Delta t+\frac{1}{2} a \Delta t^{2}$

Challenge!

Knowing that $a=\frac{V_{\mathrm{f}}-V_{\mathrm{i}}}{\Delta t} \quad$ and that $\quad \Delta d=\frac{V_{\mathrm{i}}+V_{\mathrm{f}}}{2} \Delta t$

Try to derive the equation
$v_{\mathrm{f}}^{2}={v_{\mathrm{i}}}^{2}+2 a \Delta d$

