Dmitri Mendeleev

Mendeleev's Periodic Law:

If the elements are arranged according to their atomic mass, a pattern can be seen in which similar properties occur regularily.

-began with 64 known elements and tried to organize them somehow based on atomic mass, solubility, density, flammability etc -when a spot occured that "should" have an element in it, Mendeleev left it blank but predicted its properties

In 1871, he predicted an element with atomic mass of 68, a density of 5.9 g/cubic cm, low melting point and a medium solubility in acids

In 1875, Gallium was discovered with atomic mass of 69.9, a density of 5.94 g/cubic cm, a melting point of 30 C and a medium solubility in acids

Mendeleev's Law and Atomic Radius

- -atomic radius is the distance between the centre of the positive nucleus and the 'outer' edge of the atom
- -generally, atomic radius:
- -increases as we move down a column
- -decreases as we move to the right in a row
- -the more electrons there are, the more protons there are,
- -more protons means a greater positive attractive force pulling on the very light electrons

- Mendeleev's Law and Melting Point -melting point is the temperature that the solid changes state and becomes a liquid -melting point tends to:
- -increase as we move right to left
- -decrease as we move down
- -as the particle gets larger, the nuclei of each adjacent atom get farther apart -in order to 'melt', the forces holding the particles together must be overcome -'large' atoms require generally less heat energy to seperate them

Other trends

atom's size decreases from left to right in a given period

atom's size increases from top to bottom in groups

as you go down a group the tendency to lose electrons increases

ionization energies increase across periods and decrease down groups

electronegativity increases from left to right in a period and decreases from top to bottom

negative ions are larger than their atoms and positive ions are smaller than their atoms

Read p. 104-105, Definitions Activity 4.3, p. 108-109

