Example

A canoeist is planning to paddle to a campsite directly acrossa river that is 624 m wide. The velocity of the river is $2.0 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$. In still water, the canoest can paddle at a speed of $3.0 \mathrm{~m} / \mathrm{s}$. If the canoeist points her canoe straight across the river, toward the east:
a) How long will it take her to reach the opposite shore?
b) Where will she land in relation to the campsite she was headed for?
c) What is the velocity of the canoe relative
to a point on the riverbank, where she left?

Oct 9-7:28 PM
a) How long will it take her to reach the opposite shore?

b) Where will she land in relation to the campsite she was headed for?

c) What is the velocity of the canoe relative to a point on the riverbank, where she left?

Example 2

The canoeist in Example lwants to head her canoe in such a direction that she will actually travel straight across the river to the campsite.
a) In what direction must she point the canoe?
b) Find the magnitude of her velocity relative to the shore?
c) How long will it take the canoeist to paddle to the campsite?

a) In what direction must she point the canoe?

b) Find the magnitude of her velocity relative to the shore?

c) How long will it take the canoeist to paddle to the campsite?

