Chapter 11:Chemical Reactions

Section 11.1:Describing Chemical Reactions

Section 11.2:Types of Chemical Reactions

Section 11.3:Reactions in an Aqueous Solution

- p. 321-344 Text Materials
- p. 346 Study Guide
- p. 347-351 Assessment

VOCABULARY

- acvity series
- balanced equaon
- catalyst
- chemical equaon
- coefficients
- combuson reacon
- combinaon reacon
- complete ionic equaon
- decomposion reacon
 - double displacement reacon
- net ionic equaon
 - single replacement reacon
 - skeleton equaon
 - spectator ion

Dec 2-4:18 PM

Section 11.1:Describing Chemical Reactions

Word Equations

Iron reacts with oxygen to produce iron (III) oxide

reactants products

iron + oxygen iron (III) oxide

Write the **names** of the reactants to the left of an arrow seperated by plus signs, write the names of the products to the right of an arrow seperated by plus signs.

Chemical Equations

Fe (s) + O_2 (g) \longrightarrow Fe₂ O_3 (s) 'skeleton equation'

Write the **formula** of the reactants to the left of the yields sign (arrow) and the formula of the products to the right.

Table 11.1	p. 323		
Symbols Used in Chemical Equations			
Symbol	Explanation		
+	Used to separate two reactants or two products		
\longrightarrow	"Yields," separates reactants from products		
\rightleftharpoons	Used in place of ──→ for reversible reactions		
(s)	Designates a reactant or product in the solid state; placed after the formula		
(1)	Designates a reactant or product in the liquid state; placed after the formula		
(<i>g</i>)	Designates a reactant or product in the gaseous state; placed after the formula		
(aq)	Designates an aqueous solution; the substance is dis- solved in water; placed after the formula		
$\stackrel{\Delta}{-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-} \xrightarrow{\text{heat}}$	Indicates that heat is supplied to the reaction		
$\stackrel{\rm Pt}{\longrightarrow}$	A formula written above or below the yield sign indicates its use as a catalyst (in this example, platinum).		

Dec 2-5:10 PM

Practice Problems

1. Write a sentence that describes this chemical reaction.

 $Na(s) + H_2O(l) \longrightarrow NaOH(aq) + H_2(g)$

2. Sulfur burns in oxygen to form sulfur dioxide. Write a skeleton equation for this chemical reaction. Include appropriate symbols from Table 11.1.

Balancing Chemical Equations

- Compare a chemical equation to making a bike out of standard parts.
- a bike consists of a frame (F), two wheels (W), two pedals (P) and a handlebar (H)

Skeleton Equation
$$F + W + H + P \longrightarrow FW_2HP_2$$

This is an 'unbalanced' equation since it does not indicate the number of reactants to needed to make the product.

Dec 2-5:15 PM

The numbers are called 'coefficients'

To write a balanced chemical equation, first write the skeleton equation. Then, use coefficients to balance the equation so that it obeys the law of conservation of mass.

Practice Problems

- 3. Balance each equation.
 - a. $AgNO_3 + H_2S \longrightarrow Ag_2S + HNO_3$
 - **b.** $Zn(OH)_2 + H_3PO_4 \longrightarrow Zn_3(PO_4)_2 + H_2O$
- **4.** Rewrite these word equations as balanced chemical equations.
 - a. hydrogen + sulfur → hydrogen sulfide
 - **b.** iron(III) chloride + calcium hydroxide → iron(III) hydroxide + calcium chloride
- 5. Balance each equation.
 - **a.** $FeCl_3 + NaOH \longrightarrow Fe(OH)_3 + NaCl$
 - **b.** $CS_2 + Cl_2 \longrightarrow CCl_4 + S_2Cl_2$
- **6.** Write and balance this equation. calcium hydroxide + sulfuric acid → calcium sulfate + water

Dec 2-5:24 PM

Section 11.2:Types of Chemical Reactions

- most reactions can be classified into 5 basic types
 - -Synthesis (also called Combination)
 - -Decomposition
 - -Single Displacement
 - -Double Displacement
 - -Combustion

Synthesis

- \bullet synthesis comes from Greek 'sunthesis' meaning to put in together
- a chemical change in which two or more substances react to form a single new substance

EXAMPLE:

$$2Mg + O_2 \longrightarrow 2MgO$$

Practice Problems

13. Complete and balance this equation for a combination reaction.

$$Be + O_2 \longrightarrow$$

14. Write and balance the equation for the formation of magnesium $nitride(Mg_3N_2)$ from its elements.

Dec 9-3:05 PM

Decomposition

- a single compound breaks down into two or more simpler substances
- difficult sometimes to predict the products unless the reactant is a binary compound

EXAMPLE:

$$2H_2O \longrightarrow 2H_2 + O_2$$

Practice Problems

15. Complete and balance this decomposition reaction.

$$HI \longrightarrow$$

16. Write the formula for the binary compound that decomposes to the products H₂ and Br₂.

Single Displacement Reactions

• a reaction in which a single element replaces a second element in a compound.

EXAMPLE:

$$2K(s) + 2H_2O(1)$$
 \longrightarrow $2KOH(aq) + H_2(g)$

Table 11.2

Activity Series of Metals			
	Name	Symbol	
Decreasing reactivity	Lithium	Li	
	Potassium	K	
	Calcium	Ca	
	Sodium	Na	
	Magnesium	Mg	
	Aluminum	Al	
	Zinc	Zn	
	Iron	Fe	
	Lead	Pb	
	(Hydrogen)	(H)*	
. ↓	Copper	Cu	
	Mercury	Hg	
	Silver	Ag	

*Metals from Li to Na will replace H from acids and water; from Mg to Pb they will replace H from acids only.

- determining if one metal will replace another is done using the Activity Series Table at left.
- a metal will replace any metal listed **below** it in the series
- Therefore, iron will displace copper in copper containing compounds, but will not replace calcium or magnesium

Dec 9-3:13 PM

- halogens can replace other halogens as well.
- the reactivity decreases as you go DOWN Group 7A
- therefore, Bromine will replace iodine but NOT chlorine in the two reactions below

$$Br_2(aq) + 2NaI(aq) \longrightarrow 2NaBr(aq) + I_2$$

$$Br_2(aq) + NaCl(aq)$$
 NO Reaction

Practice Problem

- **17.** Complete the equations for these single-replacement reactions in aqueous solution. Balance each equation. Write "no reaction" if a reaction does not occur.
 - **a.** $Fe(s) + Pb(NO_3)_2(aq) \longrightarrow$
 - **b.** $Cl_2(aq) + NaI(aq) \longrightarrow$
 - **c.** $Ca(s) + H_2O(l) \longrightarrow$

Double Displacement Reactions

• as the name implies, this reaction involves portions of both compounds swapping places

For a reaction of this type to occur, one of the following MUST be true:

1) One of the products is only slightly soluble and precipitates from the solution.

 $Na_2S(aq) + Cd(NO_3)_2$ $CdS(s) + 2NaNO_3(aq)$

CdS is a yellow solid

2) One of the products is a gas.

```
2NaCN(aq) + H<sub>2</sub>SO<sub>4</sub>(aq)
                                            2HCN(g) + Na<sub>2</sub>SO<sub>4</sub>(aq)
```

HCN is hydrogen cyanide gas

3) One of the products is a molecular compound such as water. Ca(OH)₂(aq) + 2HCl(aq) $CaCl_2(aq) + 2H_2O(l)$

neutralization of an base by the addition of an acid

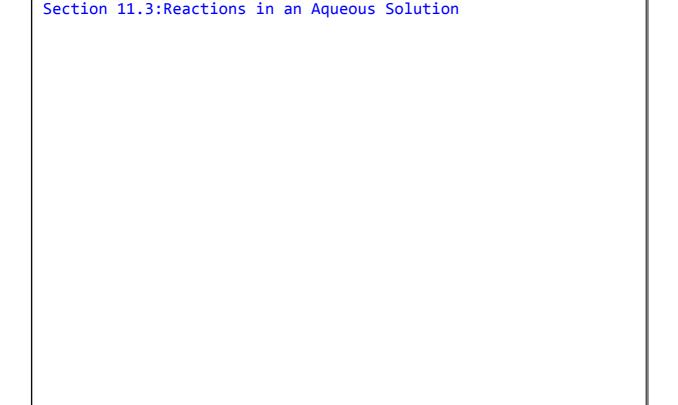
Dec 9-3:45 PM

Practice Problems

- **18.** Write the products of these doublereplacement reactions. Then balance each equation.
 - **a.** $NaOH(aq) + Fe(NO_3)_3(aq)$ (Iron(III) hydroxide is a precipitate.)
 - **b.** $Ba(NO_3)_2(aq) + H_3PO_4(aq) \longrightarrow$
 - (Barium phosphate is a precipitate.)
- 19. Write a balanced equation for each reaction.
 - a. $KOH(aq) + H_3PO_4(aq) \longrightarrow$
 - **b.** $H_2SO_4(aq) + Al(OH)_3(aq) \longrightarrow$

Combustion

- combustion reactions always involve oxygen as one of the reactants and typically release large amounts of energy in the form of heat or light or both
- combustion reactions of hydrocarbons (contain both H and C) invariably produce carbon dioxide and water as products


EXAMPLE:

$$2C_8H_{18}(1) + 250_2(g) \longrightarrow 16C0_2(g) + 18H_2(g)$$

Practice Problems

- **20.** Write a balanced equation for the complete combustion of each compound.
 - a. formic acid (HCOOH)
 - **b.** heptane (C_7H_{16})
- **21.** Write a balanced equation for the complete combustion of glucose $(C_6H_{12}O_6)$.

Dec 9-3:59 PM

