Conservation of Linear Momentum

-two types of collisons: elastic and inelastic -elastic collisions are when momentum is conserved

-inelastic collisions are when it is not conserved

Dec 5-9:05 PM

LAW OF CONSERVATION OF MOMENTUM The sum of the momenta of two objects before a collision is equal to the sum of their momenta after they collide.				
$m_{\rm A}\overrightarrow{v}_{\rm A}$ +		$m_{\rm B}\overrightarrow{v_{\rm B}} = m_{\rm A}\overrightarrow{v_{\rm A}} + m_{\rm B}\overrightarrow{v_{\rm B}}$		
Quantity		Symbol	SI unit	
mass of object A	A	$m_{ m A}$	kg (kilograms)	
mass of object B		$m_{ m B}$	kg (kilograms)	
velocity of object A before the collision		\overrightarrow{V}_{A}	m/m (metres per second)	
velocity of object B before the collision		$\overrightarrow{v_{\mathrm{B}}}$	m (metres per second)	
velocity of object A after the collision		\overrightarrow{V}_{A}	m/s (metres per second)	
velocity of object B after the collision		$\overrightarrow{v}_{ extsf{B}}$	mail (metro	es per second)

A 1.7 X 10^4 kg railcar collides with a stationary car that has a mass of 2.0 X 10^4 kg. Just before the collision the first car was travelling at 5.4m/s. If the two cars stick together after the collision, what is the velocity of the two boxcars immediately after colliding.

Dec 5-9:37 PM