DEFINTION OF POWER

Power is the quotient of work and time interval.

$$
p=\frac{W}{\Delta t} \quad \text { or } \quad p=\frac{E}{\Delta t}
$$

Quantity	Symbol	SI unit
power	P	W (watt)
energy transferred	E	J (joule)
work done	W	J (joule)
time interval	Δt	s (seconds)

Note: A watt is equivalent to a joule per second: $\mathrm{W}=\frac{\mathrm{I}}{s}$
$1 \mathrm{hp}=$ amount of work done by horses to raise 550lbs 1 foot in 1 second approx. 746Watts

DEFINTION OF EFFCIENCY

Efficiency is the ratio of useful energy or work output to the total energy or work input.

$$
\begin{gathered}
\text { Efficiency }=\frac{E_{0}}{E_{i}} \times 100 \% \\
\text { or } \\
\text { Efficiency }=\frac{W_{0}}{W_{\mathrm{i}}} \times 100 \%
\end{gathered}
$$

Quantity	Symbol	SI unit
useful output energy	E_{0}	J (joule)
input energy	E_{i}	J (joule)
useful output work	W_{0}	J (joule)
input work	W_{i}	J (joule)

efficiency
(none)
none; efficiency is a ratio; units cancel in ratios

