

Motion of Connected Objects

An Atwood machine is made of two objects connected by a rope that runs over a pulley. The object on the left (m_1) has a mass of 8.5 kg and the object on the right (m_2) has a mass of 17 kg.

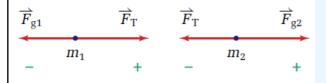
- (a) What is the acceleration of the masses?
- (b) What is the tension in the rope?

Calculations

 $\overrightarrow{F} = m\overrightarrow{a}$

 $\overrightarrow{F}_{g1} + \overrightarrow{F}_{g2} = (m_1 + m_2)\overrightarrow{a}$

 $\overrightarrow{a} = \frac{(m_2 - m_1)g}{m_1 + m_2}$


 $\overrightarrow{a} = 3.27 \frac{\text{m}}{\text{s}^2}$

 $\vec{a} = \frac{(17 \text{ kg} - 8.5 \text{ kg})9.81 \frac{\text{m}}{\text{s}^2}}{8.5 \text{ kg} + 17 \text{ kg}}$

 $\overrightarrow{a} \cong 3.3 \frac{\text{m}}{\text{s}^2} [\text{to the right}]$

 $-m_1g + m_2g = (m_1 + m_2)\overline{a}$

\overrightarrow{F}_{g1} \overrightarrow{F}_{g2} $\xrightarrow{m_1 + m_2}$

$$\overrightarrow{F} = m\overrightarrow{a}$$

$$\overrightarrow{F}_{g1} + \overrightarrow{F}_{T} = m_{1}\overrightarrow{a}$$

$$-m_{1}g + \overrightarrow{F}_{T} = m_{1}\overrightarrow{a}$$

$$\overrightarrow{F}_{T} = m_{1}g + m_{1}\overrightarrow{a}$$

$$\overrightarrow{F}_{T} = (8.5 \text{ kg}) \left(9.81 \frac{\text{m}}{\text{s}^{2}}\right) + (8.5 \text{ kg}) \left(3.27 \frac{\text{m}}{\text{s}^{2}}\right)$$

$$\overrightarrow{F}_{\mathrm{T}} = 111.18 \frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^2}$$

$$\overrightarrow{F}_{\mathrm{T}} \cong 1.1 \times 10^2 \,\mathrm{N}$$