Vectors:Representing Position and Displacement

- motion needs to be described in relation to some reference point
- knowing where you are and where you are going is important
- physicists use what is called a "vector" to do this
- it relates your position or displacement with respect to some starting point
- vectors ALWAYS include BOTH size AND direction

Vectors should always be drawn to scale and labelled For example,

Draw a vector representing 25 m E

$$
1 \mathrm{~cm}=5 \mathrm{~m}
$$

To Scale

$$
\text { Ex: } 1 \mathrm{~cm}=5 \mathrm{~km}
$$

A boy walks 4 km E and then turns and walks 6 km W. What is his resultant displacement?

$$
1 \mathrm{~cm}=1 \mathrm{~km}
$$

Mathematically

One direction is determined to be positive, therefore the opposite direction would be negative
From the previous example,

$$
\begin{gathered}
\text { if East is considered +ve, then } \\
\text { West is }-\mathrm{ve} \\
R=(+4 \mathrm{~km})+(-6 \mathrm{~km})=-2 \mathrm{~km} \text { or } 2 \mathrm{~km} \mathrm{~W}
\end{gathered}
$$

