

DEFINITION OF ELECTRIC FIELD INTENSITY

The electric field intensity at a point is the quotient of the electric force on a charge and the magnitude of the charge located at the point.

$$\overrightarrow{E} = \frac{\overrightarrow{F}_{\text{Q}}}{q}$$

Quantity	Symbol	SI unit
electric field intensity	\overrightarrow{E}	$\frac{N}{C}$ (newtons per coulomb)
electric force	$\overrightarrow{F}_{\mathrm{Q}}$	N (newtons)
electric charge	q	C (coulombs)

Unit Analysis

 $\frac{\text{newtons}}{\text{coulomb}} = \frac{\text{N}}{\text{C}}$

Note: Electric field intensity has not been given a unique unit.

DEFINITION OF GRAVITATIONAL FIELD INTENSITY

The gravitational field intensity at a point is the quotient of the gravitational force and the magnitude of the test mass.

$$\overline{g} = \frac{\overline{F}_g}{m}$$

Quantity	Symbol	SI unit
gravitational field intensity	ġ	$rac{\mathrm{N}}{\mathrm{kg}}$ (newtons per kilogram)
gravitational force	\overrightarrow{F}_{g}	N (newtons)
mass	m	kg (kilograms)