Field Intensity near a Point Charge

$$\overrightarrow{E} = \frac{\overrightarrow{F}_{Q}}{q_{t}} \longrightarrow |\overrightarrow{F}_{Q}| = k \frac{qq_{t}}{r^{2}}$$

$$|\overrightarrow{E}| = k \frac{q}{r^{2}}$$

ELECTRIC FIELD INTENSITY NEAR A POINT CHARGE

The magnitude of the electric field intensity a distance away from a point charge is the product of Coulomb's constant and the charge, divided by the square of the distance from the charge. The direction of the field is radially outward from a positive point charge and radially inward toward a negative point charge.

$$|\overrightarrow{E}| = k \frac{q}{r^2}$$

Quantity	Symbol	SI unit
electric field intensity	\overrightarrow{E}	$\frac{N}{C}$ (newtons per coulomb)
Coulomb's constant	k	$\frac{N \cdot m^2}{C^2} \text{ (newton · metres squared per coulomb squared)}$
source charge	q	C (coulombs)
distance	r	m (metres)