14.1 Laws of Force

Gravity and The Inverse Square Law

$F_{g} \alpha 1$
magnitude of the force of gravity is proportional to the inverse of the square of the distance seperating their centres

Coulombs Experiment

B

$F_{Q} \propto q_{1} q_{2}$ but, $F_{Q} \propto \frac{1}{r^{2}} \quad$ therefore,

$F_{Q} \propto q_{1} q_{2}$ r2

Coulombs Law

Any proportionality can be written as an equality by using a 'constant'.

Therefore, $\quad F_{Q} \propto \frac{q_{1} q_{2}}{r^{2}}$ becomes
$F_{Q}=k \frac{q_{1} q_{2}}{r^{2}}$

$k=9.00 \times 10^{9} \underline{N} \cdot \mathrm{~m}^{2}$
 C2

COULOMB'S LAW

The magnitude of the electrostatic force between two point charges, q_{1} and q_{2}, distance r apart, is directly proportional to the magnitudes of the charges and inversely proportional to the square of the distance between their centres.

$$
F_{Q}=k \frac{q_{1} q_{2}}{r^{2}}
$$

Quantity

electrostatic force between charges

Coulomb's constant
electric charge on object 1
electric charge on object 2
distance between
object centres

Symbal
SI unit
$F_{Q} \quad \mathrm{~N}$ (newtons)
$k \quad \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}$ (newton \cdot metres squared per coulomb squared)
$q_{1} \quad \mathrm{C}$ (coulombs)
$q_{2} \quad \mathrm{C}$ (coulombs)
$r \quad \mathrm{~m}$ (metres)

Applying Coulombs Law

A small sphere, carrying a charge of $-8.0 \mu \mathrm{C}$, exerts an attractive force of 0.50 N on another sphere carrying a charge with a magnitude of $5.0 \mu \mathrm{C}$.
(a) What is the sign of the second charge?
(b) What is the distance of separation of the centres of the spheres?

Calculations

$F=k \frac{q_{1} q_{2}}{r^{2}}$
$r^{2}=\frac{k q_{1} q_{2}}{F}$
$r=\sqrt{\frac{k q_{1} q_{2}}{F}}$
$r= \pm \sqrt{\frac{\left(9.0 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}\right)\left(8.0 \times 10^{-6} \mathrm{C}\right)\left(5.0 \times 10^{-6} \mathrm{C}\right)}{5.0 \times 10^{-1} \mathrm{~N}}}$
$r= \pm 0.84853 \mathrm{~m}$
$r \cong 0.85 \mathrm{~m}$

