Acceleration
-defined as the rate of change of speed -calculated as the change in speed with respect to the change in time

Formula

$$
a=\frac{\Delta v}{\Delta t}=\frac{\left(U_{f}-V_{i}\right)}{\Delta t}
$$

Since this equation contains several variables, it can be manipulated to solve for any one of them

Example
Myriam Beard accelerates at an average $2.5 \mathrm{~m} / \mathrm{s}^{2}$ for 1.5 s . What is her change in speed at the end of 1.5 s

$$
\begin{array}{rlrl}
a=\frac{\Delta v}{\Delta t} & \begin{array}{l}
a \\
a
\end{array} & \begin{array}{ll}
\Delta .5 \mathrm{~m} / \mathrm{s}^{2} \\
\Delta v=1.5 \mathrm{~s}
\end{array} \\
\Delta v & =a . \Delta t \\
& =(2.5)\left(1.5^{-}\right)+3.75 \mathrm{~m} / \mathrm{s}
\end{array}
$$

A skateboarder rolls down a hill and changes his speed from rest to $1.9 \mathrm{~m} / \mathrm{s}$. If the average acceleration down the hill was $0.4 \mathrm{~m} / \mathrm{s}^{2}$, now tong we hilt? how long did this
take?

$$
\begin{aligned}
& a=\frac{v_{f}-v_{i}}{\Delta t} \\
& a \Delta t=v_{f}-v_{i} \\
& \Delta t=\frac{v_{f}-v_{i}}{a} \\
& =\frac{1.9-0}{0.4} \\
& =4.75 \mathrm{~s}
\end{aligned}
$$

$$
V_{i}=0
$$

$$
V_{f}=1.9 \mathrm{~m} / \mathrm{s}
$$

$a=\frac{V_{\rho} J_{i}}{\Delta t}$

$$
\begin{aligned}
& a=0.4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
0.4=\frac{1.9-0}{\Delta t}
$$

$$
0.4=\frac{1.9}{\Delta t}
$$

$$
\Delta t=\frac{1.9}{0.4}=4.75
$$

Kerrin-Lee Gartner is moving at $1.8 \mathrm{~m} / \mathrm{s}$ near the top of a ski hill. 4.2 s later she is travelling at $8.3 \mathrm{~m} / \mathrm{s}$. What was her average acceleration?

A bus with an initial speed of $12 \mathrm{~m} / \mathrm{s}$ accelerates at $0.62 \mathrm{~m} / \mathrm{s}^{2}$ for 15 s . What is the final speed of the bus?

A snowmobile reaches a top speed of $22.5 \mathrm{~m} / \mathrm{s}$ after accelerating at $1.2 \mathrm{~m} / \mathrm{s}^{2}$ for 17 s . What was the initial speed of the snowmobile?

In a race, a car travelling at $100 \mathrm{~km} / \mathrm{h}$ comes to a stop in 5.0 s . What was the average acceleration?

