p. 714 Solutions

#24)

Strategy

Apply Ohm's law.

Calculations

V = IR

Substitute first

12 V =
$$I(5.8 \Omega)$$

12 V·
$$\frac{1}{5.8 \Omega}$$
 = (5.8 A) $\frac{I}{12 \Omega}$

$$I = \frac{12 \text{ V}}{5.8 \Omega}$$

 $I = \frac{Q}{\Delta t}$

$$I = 2.07 \text{ A}$$

Use the expression for the electric current to solve for the charge and use the fact that A-s is equivalent to C.

Substitute first

$$=\frac{Q}{480 \text{ s}}(480 \text{ s})$$

$$Q = (2.07 \text{ A})(480 \text{ s})$$

$$Q = 990 \text{ C}$$

#25)

Strategy

Use the expression for the potential difference.

The amount of work done is equal to the potential energy.

Solve for the charge.

Calculations

$$V = \frac{\Delta E_{Q}}{Q}$$

$$W = \Delta E_{\rm Q}$$

$$W = 3.35 \times 10^5 \,\mathrm{J}$$

Substitute first

$$(120 \text{ V})Q = \frac{3.35 \times 10^5 \text{ J}}{Q}Q$$

$$\frac{\frac{(120 \text{ V})Q}{120 \text{ V}} = \frac{3.35 \times 10^5 \text{ J}}{120 \text{ V}}}{Q = \frac{3.35 \times 10^5 \text{ J}}{120 \text{ V}}}$$

Solve for Q first

$$VQ = \frac{\Delta E_Q}{Q} Q$$

$$\frac{\cancel{+Q}}{\cancel{+}} = \frac{\Delta E_{Q}}{V}$$

$$Q = \frac{3.35 \times 10^5 \,\text{J}}{120 \,\text{V}}$$

$$Q = 2.80 \times 10^{3} \text{ C}$$

 $1\frac{J}{V}$ is equivalent to 1 C, thus

#25)-continued

Use the expression for the electric current to solve for the current.

Substitute and divide.

 $1 \frac{C}{s}$ is equivalent to 1 A, thus

Apply Ohm's law.

$$I = \frac{Q}{\Delta t}$$

$$I = \frac{2.80 \times 10^3 \, \text{C}}{270 \, \text{s}}$$

$$I = 10.3 \text{ A}$$

$$V = IR$$

Substitute first

120 V = (10.3 A) R
120 V
$$\frac{1}{10.3 \text{ A}}$$
 = (10.3 A) $\frac{R}{10.3 \text{ A}}$

$$R = \frac{120 \text{ V}}{10.3 \text{ A}}$$

$$R = 11.6 \Omega$$

Solve for R first

$$V = IR$$

$$V \cdot \frac{1}{I} = \frac{I}{I} \frac{R}{I}$$

$$R = \frac{120 \text{ V}}{10.3 \text{ A}}$$

$$R = 11.6 \Omega$$

The resistance is 11.6Ω .

#26)

Use the expression for the potential

The amount of work done is equal to the potential energy.

Solve for the charge.

Calculations

$$V = \frac{\Delta E_{Q}}{Q}$$

$$W = \Delta E_{\rm Q}$$

$$\Delta E_{\rm Q} = 4.32 \times 10^5 \, \rm J$$

Substitute first
$$(240 \text{ V}) Q = \frac{4.32 \times 10^5 \text{ J}}{Q} Q$$

$$\frac{(240 \text{ V}) Q}{240 \text{ V}} = \frac{4.32 \times 10^5 \text{ J}}{240 \text{ V}}$$

$$Q = \frac{4.32 \times 10^5 \text{ J}}{120 \text{ V}}$$

 $\frac{1}{V}$ is equivalent to 1 C, thus Apply Ohm's law.

$$Q = 1800 \text{ C}$$

$$V = \frac{I}{R}$$

Substitute first

$$240 \text{ V} = I(60.0 \Omega)$$

 $240 \text{ V} \cdot \frac{1}{60.0 \Omega} = (60.0 \text{ A}) \cdot \frac{I}{12 \Omega}$
 $I = \frac{240 \text{ V}}{60.0 \Omega}$
 $I = 4.00 \text{ A}$

#26)-continued

Use the expression for the electric current to obtain the time.

$$I = \frac{Q}{\Delta t}$$

Substitute first

$$(4.00 \text{ A})\Delta t = \frac{1800 \text{ C}}{\Delta t} \Delta t$$
$$\Delta t = \frac{1800 \text{ C}}{4.00 \text{ A}}$$

$$1 \frac{C}{A}$$
 is equivalent to 1 s.

$$\Delta t = 450$$

1 $\frac{C}{A}$ is equivalent to 1 s. $\Delta t = 450$ s It would take 450 s or 450 s $\frac{1~min}{60~s} = 7.50$ min for the battery to do the amount of work.