The Mole: A Measurement of Matter

Mole/Mass Conversions

Percent Composition & Chemical Formulas 🗼

Chapter 10

- p. 287-313 Materials p. 314 Study Guide
- p. 315-319 Assessment

The Mole: A Measurement of Matter

What Is a Mole?

Name some things that we 'count' in groups, or that a specific number represents

Chemists use a specific number to represent things.

A 'mole' of any substance contains 6.02 x 10²³ representative particles.

Converting Number of Particles to Moles

1 mol=6.02 x 10²³ particles is the basis of the conversion factor

EXAMPLE:

How many moles of magnesium is 1.25 x 10^{23} atoms?

1 mol of Mg =
$$6.02 \times 10^{23}$$
 particles
x mol of Mg = 1.25×10^{23} particles

$$\frac{1}{X} = \frac{6.02 \times 10^{23}}{1.25 \times 10^{23}}$$

$$(6.02 \times 10^{23}) \times = 1.25 \times 10^{23}$$

$$x = \frac{1.25 \times 10^{23}}{6.02 \times 10^{23}} \longrightarrow 0.208 \text{ mol}$$

Converting Moles to Number of Particles

EXAMPLE:

Propane gas is used for heating and cooking. How many *atoms* are in 2.12mol of propane (C_3H_8)

1 mol of propane =
$$6.02 \times 10^{23}$$
 particles
2.12 mol of propane = \times particles

$$\frac{1}{2.12} = \frac{6.02 \times 10^{23}}{x}$$

$$x = (6.02 \times 10^{23})(2.12)$$

$$1.27624 \times 10^{24}$$
 particles of propane

but 1 particle of propane has 11 atoms therefore,

$$(1.27624 \times 10^{24})(11) \longrightarrow 1.40 \times 10^{25}$$
 atoms

Mass of A Mole of a Substance

• The molar mass of a substance is the sum of the molar masses of each element in that substance.

The atomic mass in amu of any element is it's molar mass in grams.

EXAMPLE:

molar mass of glucose C₆H₁₂O₆

6 x the molar mass of C = (6)(12amu)= 72g 12 x the molar mass of H = (12)(1amu)= 12g 6 x the molar mass of O = (6)(16amu)= 96g Total=180g

- ∴ 1 mole of glucose has a mass of 180g
- 6.02×10^{23} particles glucose has a mass of 180g

Converting Moles to Mass

The aluminum satellite dishes in Figure 10.8 are resistant to corrosion because the aluminum reacts with oxygen in the air to form a coating of aluminum oxide (Al₂O₃). This tough, resistant coating prevents any further corrosion. What is the mass of 9.45 mol of aluminum oxide?

Known 1 mole of Al_2O_3

therefore,

1 mol = 101.93g
9.45 mol =
$$x$$
 g

$$= 963.24 g$$

cross multiplying,

$$x g = (9.45)(101.93) = 963.24g$$

- $4.52 \times 10^{-3} \, \text{mol C}_{20} \text{H}_{42}.$
- **16.** Find the mass, in grams, of **17.** Calculate the mass, in grams, of 2.50 mol of iron(II) hydroxide.

Converting Mass to Moles

When iron is exposed to air, it corrodes to form red-brown rust. Rust is iron(III) oxide (Fe₂O₃). How many moles of iron(III) oxide are contained in 92.2 g of pure Fe₂O₃?

Known

1 mole of
$$Fe_2O_3$$
 Fe = 55.85 x 2 = 111.7g
 $O = 15.99 x 3 = 47.97g$
159.67g

Method 1

Cross Multiply,

$$(92.2) = (159.67)(x)$$

 $92.2 = x = 0.58 \text{ mol}$
 159.67

$$\frac{92.2}{159.67} = 0.58 \text{ mol}$$

- **18.** Find the number of moles in **19.** Calculate the number of moles 3.70×10^{-1} g of boron.
 - in 75.0 g of dinitrogen trioxide.

Moles/Volume Conversions

Avogadro's Hypothesis

• equal volumes of gases at the same temperature and pressure will contain equal number of particles

Standard Temperature & Pressure (STP)

- temperature of 0°C
- pressure of 101.3kPa (1 atmosphere=1atm)

At STP, 1 mol (6.02×10^{23}) representative particles, of any gas, occupies a volume of 22.4 L

Calculating the Volume of a Gas at STP

Sulfur dioxide (SO₂) is a gas produced by burning coal. It is an air pollutant and one of the causes of acid rain. Determine the volume, in liters, of 0.60 mol SO₂ gas at STP.

$$1 \text{mol} = 22.4 \text{L}$$

0.60 mol = $X \text{L}$

$$\frac{0.60 \text{mod}}{1 \text{mod}} = 13 \text{L}$$

$$X=(0.60)(22.4)=13L$$

- gases at STP?
 - **a.** $3.20 \times 10^{-3} \text{ mol CO}_2$
 - **b.** 3.70 mol N₂
- **20.** What is the volume of these **21.** At STP, what volume do these gases occupy?
 - **a.** 1.25 mol He
 - **b.** $0.335 \text{ mol } C_2H_6$

Calculating Molar Mass from Density

 \bullet the density of gases are usually measured in grams/L (g/L) at a specific temperature.

Calculating the Molar Mass of a Gas at STP

The density of a gaseous compound containing carbon and oxygen is found to be 1.964 g/L at STP. What is the molar mass of the compound?

Knowns

- density = 1.964 g/L
- 1 mol (gas at STP) = 22.4 L

1.964g = 1L

$$x$$
 = 22.4L
∴ $x = (22.4)(1.964)$
= 43.994g/mol

$$\frac{1.964g}{1/l} = \frac{22.4/l}{1 \text{ mol}} = 43.994g/\text{mol}$$

- **22.** A gaseous compound composed of sulfur and oxygen, which is linked to the formation of acid rain, has a density of 3.58 g/L at STP. What is the molar mass of this gas?
- **23.** What is the density of krypton gas at STP?

Percent Composition & Chemical Formulas