Section 5.1: Models of the Atom

- Dalton, Thompson & Rutherford all made great discoveries in the development of atomic structure
- 1913, Neils Bohr proposed that e could only exist in certain very specific energy levels, or orbits, around the nucleus.
- when an ereceives energy from some source, it can move up to a higher orbit
- once their (excited state) the atom becomes unstable and the e⁻ immediately try to return to their original orbit.
- in order to return, they must give off the energy they absorbed to rise up

Quantum Mechanical Model

- determines the allowed energies an electron can have and how likely it is to find the electron in various locations around the nucleus.
- each energy sublevel corresponds to an orbital of a different shape, which describes where the electron is likely to be found.

Table 5.1

Summary of Principal Energy Levels, Sublevels, and Orbitals

Principal energy level	Number of sublevels	Type of sublevel
<u>n</u> = 1	1	1s (1 orbital)
n = 2	2	2s (1 orbital), 2p (3 orbitals)
<u>n</u> = 3	3	3s (1 orbital), 3p (3 orbitals), 3d (5 orbitals)
n = 4	4	4s (1 orbital), 4p (3 orbitals), 4d (5 orbitals), 4f (7 orbitals)

Table 5.2

Maximum Numbers of Electrons		
Energy level <i>n</i>	Maximum number of electrons	
1	2	
2	8	
3	18	
4	32	