<u>Terms</u>

- thermochemistry-the study of energy changes that occur during chemical reactions or changes of state.
- heat (represented by 'q') is energy that transfers from one object to another because of a temperature difference between them.

Heat ALWAYS flows from a warmer object to a cooler one until the temperature is equalized.

- exothermic-the 'system' loses heat as the surroundings heat up
- endothermic-the 'system' gains heat as the surroundings cool down

Units of Heat Measurement

Heat flow is measured in two common units, calorie or joule.

- calorie (cal) is defined as the quantity of heat (q) needed to raise the temperature of 1g of pure water 1° C.
- 1 dietary Calorie, is equivalent to 1 kilocalorie, 1000 calories
- the joule is the SI unit
- 1 J of heat raises the temperature of water 0.239 $^{\circ}$ C

1 J = 0.239 cal 4.184 J = 1 cal

Heat Capacity and Specific Heat

Heat Capacity = the amount of heat required to raise the temperature of an object exactly 1

Specific Heat Capacity (represented by C)

-also called simply 'specific heat'

-the amount of heat required to raise 1g of a substance exactly 1

able 17.1		
Specific Heats of Some Common Substances		
Substance	Specific Heat	
	J/(g∙°C)	cal/(g•°C)
Water	4.18	1.00
Grain alcohol	2.4	0.58
Ice	2.1	0.50
Steam	1.7	0.40
Chloroform	0.96	0.23
Aluminum	0.90	0.21
Iron	0.46	0.11
Silver	0.24	0.057
Mercury	0.14	0.033

p. 508

Calculation of Specific Heat

of copper?

 $C = \frac{q}{m \times \Delta T} = \frac{\text{heat (joules or calories)}}{\text{mass (g)} \times \text{change in temperature (°C)}} \qquad \begin{array}{l} \text{Notel} \\ \Delta T = T_f - T_i \end{array}$ Units are either $\frac{J}{g} \qquad \frac{\text{cal}}{g}$ SAMPLE PROBLEM 17.1 $\begin{array}{l} \text{Hwk p. 510} \\ \text{#3,4} \\ \text{#9-11} \end{array}$

Practice Problems

- **3.** When 435 J of heat is added to 3.4 g of olive oil at 21°C, the temperature increases to 85°C. What is the specific heat of the olive oil?
- **4.** How much heat is required to raise the temperature of 250.0 g of mercury 52°C?

9. Using calories, calculate how much heat 32.0 g of water absorbs when it is heated from 25.0°C to 80.0°C. How many joules is this?

10. A chunk of silver has a heat capacity of 42.8 J/°C and a mass of 181 g. Calculate the specific heat of silver.

11. How many kilojoules of heat are absorbed when 1.00 L of water is heated from 18°C to 85°C?