Chapter 12-Stoichiometry

- Section 12.1-The Arithmetic of Chemistry Text p. 353-358
- Section 12.2-Chemical Calculations Text p. 359-367
- Section 12.3-Limiting Reagent and Percent Yield Text p. 368-375

Study Guide p. 378

Assessment Section p. 379-383

Section 12.1-The Arithmetic of Chemistry

- balanced chemical equations provide the 'recipes' for chemical reactions
- like baking recipes, it tells you how much you need and how much you get

EXAMPLE:

each tricycle needs the material pictured below minimum to complete one unit

Questions:

- 1. How many complete tricycles could you make with 12 wheels?
- 2. How many seats would be needed?
- 3. How many pedals would be needed?
- 4. How many complete tricycles could be made if you had 17 wheels?
- 5. How many seats would be needed?
- 6. How many pedals would be needed?
- 7. How much of each material is needed to make 175 tricycles? Is anything left over?

Interpreting a Balanced Chemical Equation

Hydrogen sulfide, which smells like rotten eggs, is found in volcanic gases. The balanced equation for the burning of hydrogen sulfide is:

$$2H_2S(g) + 3O_2(g) \longrightarrow 2SO_2(g) + 2H_2O(g)$$

Interpret this equation in terms of

a. numbers of representative particles and moles.

The coefficients in a balanced chemical equation can be interpreted as atoms, particles or moles.

EXAMPLE:

 $2H_2S$ can mean 2 molecules of H_2S or 2 moles of H_2S and so on

$$2H_2S(g) + 3O_2(g) \longrightarrow 2SO_2(g) + 2H_2O(g)$$

b. masses of reactants and products.

since the coefficients can be interpreted as # of moles, this balanced chemical equation tells us that 2 mol of H_2S and 3 mol of O_2 react to produce 2 mol of SO_2 and 2 mol of H_2O

Mass of Reactants

Total Mass is
$$68.2g + 96g = 164.2g$$

<u>Mass of Products</u>

Total mass is
$$128.2g + 36g = 164.2g$$

Chemical Calculations

$$N_2 + 3H_2 \longrightarrow 2NH_3$$

1 mol of $\rm N_2$ reacts with 3 mol of $\rm H_2$ producing 2 mol of $\rm NH_3$ Determine the masses in this reaction

28g
$$N_2$$
 + 6g $H_2 \longrightarrow 34g NH_3$

Question?

What if only 0.5 mol of N2 were available?

$$\begin{array}{cccc}
1N_2 + 3H_2 & \longrightarrow & 2NH_3 \\
\downarrow & & \downarrow & & \downarrow \\
_{0.5} & & _{1.5} & & _{1.0}
\end{array}$$

Therefore, only 1.5 mol of $\mbox{H}_{\mbox{\scriptsize 2}}$ are used and it would only produce 1 mol of $\mbox{\scriptsize NH}_{\mbox{\scriptsize 3}}$

28g N₂ + 6g H₂
$$\longrightarrow$$
 34g NH₃
14g 3g 17g
1 mol H₂ = 2g
1.5 mol H₂ = 3g

'Typical' stoichiometric calculations will involve converting the moles of reactants or products into masses or volumes and vice versa.

These might include: Generally speaking:

- Balance the original equation mole-mole calculations 1.
 - Convert masses or volumes to moles 2.
- mass-mass calculations 3. 'rebalance' the equation using the 'new' mole values.
- mole-volume@STP 4. Convert the 'new' moles back into masses or volumes.
- mass-volume@STP
- volume@STP-moles ALWAYS determine before starting
- > what you are given • volume@STP-mass
 - > what you need to find

Limiting Reagent and Percent Yield