Wave Behaviour 8.2

KEY TERMS

- wave
- · frequency of a wave
- medium
- transverse
- mechanical wave
- wave
- crests
- longitudinal wave
- troughs
- wave
- wavelength
- equation

Figure 8.6 This idealized wave illustrates the features that are common to all waves.

Figure 8.7 When a transverse wave travels along a spring, the segments of the spring vibrate from side to side, perpendicular to the direction of the wave motion.

Figure 8.8 When a longitudinal wave travels along a spring, the segments of the spring vibrate parallel to the direction of the wave motion.

Speed, Wavelength, and Frequency: A Universal Wave Equation

Strategy

Use the formula for the velocity (or speed) of any entity.
Substitute in known values.

Substitute $\frac{1}{f}$ for T.

Simplify.

Calculations

$$v = \frac{\Delta d}{\Delta t}$$

$$v = \frac{\lambda}{T}$$

$$V = \frac{\lambda}{\frac{1}{f}}$$

$$v = \lambda f$$

The speed of a wave is the product of its wavelength and its frequency: $v = \lambda f$.

THE WAVE EQUATION

The speed of a wave is the product of the wavelength and the frequency.

$$v = f\lambda$$

Quantity	Symbol	SI unit
speed	V	$\frac{m}{s}$ (metres per second)
frequency	f	Hz (or s^{-1})(hertz)
wavelength	λ	m (metres)

Unit Analysis

(frequency)(wavelength) = Hz m =
$$s^{-1}$$
 m = $\frac{m}{s}$

A physics student vibrates the end of a spring at 2.8 Hz. This produces a wave with a wavelength of 0.36 m. Calculate the speed of the wave.

$$V = f$$

= 2.8.36
= 1.008 m/s

Water waves with wavelength 2.8 m, produced in a wave tank, travel with a speed of 3.80 m/s. What is the frequency of the device that produced them?

$$V = f \lambda$$

 $3.8 = 2.8 f$
 $2.8 = 2.8$
 1.36 f