The next unit will be Trigonometry

$$
\begin{aligned}
& \text { Some of the topics will be 1) rotation angles } \\
& \qquad \begin{array}{l}
\text { 2) reference angles } \\
\text { 3) coterminal angles } \\
\text { 4) CAST Rule } \\
\text { 5) Special triangles }
\end{array}
\end{aligned}
$$

Rotation Angles

- standard position - when the initial arm is on the positive x-axis and the vertex is at the origin.
ex: positive rotation - counter clockwise (ccw)

ex: negative rotation - clockwise (cw)

Circle the angles that are in standard position.

Definition of Coterminal Angles

Coterminal Angles are angles drawn in standard position that share a terminal side.
For any angle θ, an angle coterminal with θ can be obtained by using the formula $\theta+k \cdot\left(360^{\circ}\right)$, where k is any integer.

State both a positive and negative angle that would be coterminal with each of the following...

a) 10° b) -235°

Coterminal angles are angles of different size that have their terminal arm in the same place.
To find coterminals just add or subtract 360°. Any angle will have an infinite number of coterminals.

Angles that are in standard position are said to be quadrantal if their terminal side coincides with a coordinate axis. Angles in standard position that are not quadrantal fall in one of the four quadrants, as shown below...

- Quadrantal angle: terminal arm lies on a quadrant boundary (axis) examples...

Within which quadrant would the terminal arm for each of the following rotation angles be found?
94°
500°
-100°

180°

-300°

Page 83 \#'s 1-4

