Substitution Rule

Each differentiation rule for functions provides a rule to find an antiderivative.

Each rule is rewritten into a method for finding integrals. This rewriting is called substitution.

U-Substitution is the next integration technique we will look at. It involves taking more complicated integrals and converting them into a more familiar form that makes for easier integration.

^{**} Integration by substitution (also called u-substitution or " <u>The Reverse Chain Rule</u>") is a method to find an integral, but only when it can be set up in a special way.

Chain Rule (derivative)

$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$

Substitution Rule

$$\int f(g(x))g'(x)dx = \int f(u)du, \text{ where } u = g(x),$$

$$du = g'(x)dx$$

Integration method (u-substitution)

Ex.
$$\int \sqrt{x^2+7} 2x dx$$

Ex.
$$\int (x^3-12)^{-4} x^2 dx$$

Ex.
$$\int \frac{2x^4}{x^5+2} dx$$

Ex.
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

$$\int \tan^5 x \sec^2 x \, dx$$

$$\int \frac{\sin(\ln x)}{x} dx$$

$$\int x^2 e^{x^3} dx$$