Slope Assignment

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. A straight section of an Olympic downhill ski course is 34 m long. It drops 16 m in height. Determine the slope of this part of the course.
a. $-\frac{15}{8}$
b. $-\frac{8}{15}$
c. $-\frac{8}{17}$
d. $-\frac{17}{8}$

Short Answer

2. A road rises 9 m for every 60 m measured horizontally. Determine the slope of the road.
3. A school plans to build a wheelchair ramp from the sidewalk to the front entrance of the school. The slope of the ramp must be $\frac{3}{32}$. The entrance to the school is 75 cm above the ground. What is the horizontal distance needed for the ramp?

Problem

4. A guy wire helps to support a tower. One end of the wire is 25 m from the base of the tower. The wire has a slope of $\frac{8}{5}$. How high up the tower does the wire reach?
5. Determine the slope of each line segment.

6. Four students determined the slope of the line through $\mathrm{S}(7,-5)$ and $\mathrm{T}(-15,11)$. Their answers were: $\frac{11}{8}$, $-\frac{11}{8}, \frac{8}{11}$, and $-\frac{8}{11}$. Which answer is correct? How do you know?

Slope Assignment

Answer Section

MULTIPLE CHOICE

1. ANS: B

SHORT ANSWER

2. ANS:
$\frac{3}{20}$
3. ANS:

800 cm , or 8 m

PROBLEM

4. ANS:

Sketch a diagram.
Slope $=\frac{\text { rise }}{\text { run }}$
The wire is 25 m from the base of the tower, so the run is 25 .

The slope is $\frac{8}{5}$. Write an equation.

$$
\begin{aligned}
\frac{8}{5} & =\frac{\text { rise }}{25} \\
\text { (25) } \frac{8}{5} & =(25) \frac{\text { rise }}{25} \\
\frac{200}{5} & =\text { rise } \\
\text { rise } & =40
\end{aligned}
$$

The guy wire is attached to the building 40 m above the ground.
5. ANS:

Count units to determine the rise and run.
From R to Q , both x and y are increasing, so the rise is 4 and the run is 6 .

Slope $=\frac{\text { rise }}{\text { run }}$
Slope $=\frac{4}{6}$
Slope $=\frac{2}{3}$
Line segment RQ has slope $\frac{2}{3}$.

From R to S, y is decreasing, so the rise is -3 ; x is increasing, so the run is 5 .
Slope $=\frac{\text { rise }}{\text { run }}$
Slope $=\frac{-3}{5}$
Slope $=\frac{-3}{5}$
Line segment RS has slope $-\frac{3}{5}$.
From S to Q , both x and y are increasing, so the rise is 7 and the run is 1 .
Slope $=\frac{\text { rise }}{\text { run }}$
Slope $=\frac{7}{1}$
Line segment SQ has slope 7.
6. ANS:

Subtract corresponding coordinates to determine the change in x and in y.
From S to T :
The rise is the change in y-coordinates.
Rise $=11-(-5)$
The run is the change in x-coordinates.
Run $=-15-7$
Slope of ST $=\frac{11-(-5)}{-15-7}$
Slope of ST $=-\frac{8}{11}$
The slope of ST is $-\frac{8}{11}$.
The correct answer is $-\frac{8}{11}$.

